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Intergranular segregation is studied in the limit of infinitely diluted solution for eight dilute
metallic systems made of four face centred cubic metals, one transition metal, nickel, and
three noble metals, copper, silver and gold. The grain boundary (GB) chosen is the
symmetrical tilt �= 11′ {332} 〈110〉 GB with its characteristic “zigzag” structural pattern as
numerically calculated and experimentally observed by high resolution transmission
electronic microscopy in nickel. The metallic interactions are modelled with Finnis-Sinclair
like potentials. The atomic sites are characterised by a geometrical parameter defined with
their exact Voronoı̈’ volumes and the tensor of the stresses locally exerted. The {332} GB
presents the most diversity of sites in these respects. The segregation energies are
computed and analysed versus the only two ’driving forces’ which can play a role in
metallic intergranular segregation, viz. the elastic size effect and the excess cohesion
energy effect. The elastic size effect calculated by the method of virtual impurity represents
the main segregation driving force in most cases of the considered systems. It is worth
noting however that the excess cohesion energy effect is important for non hydrostatic or
compressive sites. It can even be predominant, as in the case of Ni(Cu).
C© 2005 Springer Science + Business Media, Inc.

1. Introduction
Intergranular segregation by dopants or impurities has
a crucial rôle on all physical, chemical and mechani-
cal properties of polycrystalline materials that depend
on the nature of their grain boundaries, such as grain
growth, corrosion and fracture. Review articles already
exist [1–6], together with many numerical simulation
studies at the atomic scale [7–24].

One possible approach to try to better understand the
physics of segregation is to identify its “driving forces”.
Three such “driving forces” have been identified for
surface segregation on metals using phenomenological
models of interaction. They can be termed as a size
effect, an excess cohesion effect and an alloy effect
[25–28]. The relative contributions of these three driv-
ing forces has also been investigated numerically for
the intergranular segregation of silver in copper and
copper in silver for the two symmetric � = 5 〈001〉 tilt
grain boundaries (GBs) [21, 22]. The elastic size effect
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has been found to be the dominant effect. We refined
the level of analysis by studying the only two possible
driving forces identifiable for intergranular segregation
in the infinite dilution limit, viz. the size effect and ex-
cess cohesion effect, in the case of silver in nickel and
nickel in silver for the two symmetric � = 11 〈110〉
tilt GBs [24] whose structures had been experimentally
observed in nickel. Characterizing the atomic sites in
the pure metal GB with two parameters (see Section
2.3), a geometrical one involving the exact Voronoı̈’
volume, and a more physical parameter involving both
the local forces and the local distances, viz. the pres-
sure, we found a non negligible contribution of excess
cohesion energy in these two systems for sites either
characterized by a strong compression or found to be
non hydrostatic (but the atomic stress tensor compo-
nents were not explicitly given in that article).

In this study we want to extend the previous analysis
to other dilute binary metallic systems, another system
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Figure 1 Cohesive energy Ec (eV) versus fcc atomic radius r (Å) for
Nickel, Copper, Silver, and Gold. The atomic radius r is related to the
cubic lattice parameter a via r = a/(2

√
2). Experimental values are from

[34], see Table I. The continuous lines between metals indicate the binary
systems explicitly discussed in this paper.

for which the size effect also ought to be important, Cu-
Ag, and two systems for which the size effect should
be small, Ni-Cu, or even negligible, Au-Ag. These last
two systems should allow for a finer analysis of the co-
hesion effect in the absence of an overwhelming elastic
size effect. One can also note that nickel is a transition
metal while copper is a noble metal so that behaviour
differences might be expected between Ni-Ag and Cu-
Ag for instance. The Ni-Ag and Cu-Ag systems are
characterized by a very strong tendency to decompo-
sition [29, 30] primarily due to the difference in size
between the atoms of solvent and solute in fcc struc-
ture (the first Hume-Rothery rule [31]). They present
very small limits of solubility on both sides of the mis-
cibility gap and thus a strong tendency of segregation.
The Ni-Cu and Au-Ag systems are miscible.

A synoptic presentation of the cohesive energies and
atomic radii of the four face centred (fcc) metals re-
tained, namely nickel, copper, silver and gold, is given
in Fig. 1. As explicit in Section 2.1, modelling adapted
to fcc metals is carried out using semi-empirical n-body
potentials with the now famous negative square root
embedding functional [32, 33]. The potentials are ad-
justed to well reproduce the principal physical charac-
teristics of each metal and alloy.

The eight following binary systems solvent-solute,
Ni(Ag), Cu(Ag), Ni(Cu), Au(Ag), and their reverse,
Ag(Ni), Ag(Cu), Cu(Ni), Ag(Au), will thus be stud-
ied in the limit of the infinitely diluted solutions. The
difference in size between atoms is evaluated by the
ratio of the atomic radii of the solute (or Impurity I),
rI , and solvent (or Matrix M), rM , r = rI /rM . System
M(I ) will be called ‘direct’ if this r ratio is higher than
1 and ‘reverse’ if r is lower than 1. For instance, for
Ni(Ag), r = 1.16, and for Ag(Ni), r = 0.862. Ranging
the systems by decreasing order of r , one has Ni(Ag),
Cu(Ag), Ni(Cu), Au(Ag), Ag(Au), Cu(Ni), Ag(Cu) and
Ag(Ni). We shall not explicitly consider here the Ni-Au
and Cu-Au systems because they are expected to (and
indeed proved to) behave very similarly to the Ni-Ag
and Cu-Ag systems.

In our previous article [24], we studied two GBs
whose structure had been unambiguously confirmed
at the atomic level thanks to HRTEM observations in
nickel, the �11 {113} and the � 11′ {332}, and we had
found that the latter one contained the most diversity as
far as type of atomic sites is concerned with respect to
the former one since it included for instance a strongly
compressed site absent in the higly symmetric atomic
structure of the {113}. We shall thus concentrate here
on the �11′ {332} structure only (see Section 3.1).

2. Theory and method
2.1. Potentials
Let us first recall the standard outer electronic config-
urations of the atoms we shall consider in the metallic
state: nickel has 3d84s2, copper 3d104s1, silver 4d105s1,
and gold 4f145d106s1.

The potentials we use pertain to the embedded atom
philosophy [35] with the Finnis-Sinclair (FS) square
root embedding functional [32]. Although originally
derived for transition metals [36] this functional proved
to be particularly efficient for noble metals as well [33,
37]. The parametrised functions are short ranged expo-
nentials smoothly extended to zero values by adapted
polynomials (RGL) [24, 33]. No long range Friedel os-
cillation term is included.

The cohesion energy of a system containing N atoms
with respect to the N atoms being isolated is written as
the sum of cohesive embedded terms and repulsive pair
interactions. We have

EN =
N∑

i=1

{
f emb(ρi ) +

∑

j �=i

E rep(ri j )

}
; with

f emb(·) ≡ −
√

(·); ρi (r ) =
∑

j �=i

β2(ri j ) and:

β(r )= ξe−q( r
r◦ −1) from r = 0 to rc1, then smoothly

splined to zero at r = rc2 with a fifth order
polynomial,

E rep(r )=Ae−p( r
r◦ −1) from r = 0 to rc1, then smoothly

splined to zero at r = rc2 with a fifth order
polynomial, (1)

ro is the equilibrium distance between the first neigh-
bours for the considered metal. The energetic parame-
ters A and ξ are deduced exactly from the choice of p
and q and the experimental cohesion energy and equi-
librium lattice parameter [34]. The dimensionless pa-
rameters p and q are adjusted to well reproduce for
each metal the elastic constants [34], the Rose univer-
sal curve [38] and the vacancy formation energy [39].
The fifth order polynomials defined between rc1 and rc2
avoid discontinuities in the energies and divergences in
the forces [33]. The radii rc1 and rc2 are chosen such
as ro,n < rc1 < rc2 < ro,n+1, where ro,n is the equi-
librium distance between the nth neighbours and thus
define an FS-RGLn potential. Although they have no
effect on the equilibrium conditions and elastic con-
stants, they obviously have a significant influence on
energies of complex structural defects such as grain
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TABL E I Parameters used in the FS-RGL3 potentials defined in the
text [24, 32, 33], together with calculated and experimental (figures in
parentheses) data for the four metals, ‘a’ is the cubic lattice parameter
[34]. Ec is the cohesive energy per atom of the perfect crystal [34] while
Ev is the formation energy of a vacancy. Experimental Ev are from [39].
Calculated Ev correspond to the unrelaxed vacancy defect. Relaxation
only lowers these values by 1 to 2%. B is the bulk modulus and c11,
c12, c44 are the three cubic elastic constants, the experimental values
correspond to room temperature values [34]. c′ = (c11 − c12)/2 is the
Coulomb shear constant. γt is the interfacial energy of the coherent twin
fault. We use γt ∼ γi /2 when only the intrinsic stacking fault energy γi

can be found in the literature [40–42].

Metal Ni Cu Ag Au

P 10.78 9.33 10.23 10.42
q 2.50 2.80 3.38 4.00
rc1/ro 1.768 1.768 1.732 1.732
rc2/ro 1.98 1.98 2.0 2.0
a (Å) 3.524 3.615 4.0862 4.0786
Ec (eV/at) 4.44 3.49 2.95 3.81
Ev (eV) 1.55 (1.79) 1 (1.22) 0.77 (1.12) 0.77 (0.95)
B (Gpa) 203.1 (183.7) 141.8(137) 108.3 (103.8) 168.4(172.8)
c′ (Gpa) 37.5 (50.3) 20.2 (23.5) 15 (15.15) 18.4(14.6)
c11 (Gpa) 253 (250.8) 168.8 (168.4) 128.2 (124) 192.9 (192.3)
c12 (Gpa) 178.1 (150.2) 128.3 (121.4) 98.3 (93.7) 156.1(163.1)
c44 (Gpa) 111.3(123.5) 63.4 (75.4) 42.9 (46.1) 49.3 (42)
γt (mJ/m2) 42 (∼58) 21 (16−25) ∼5 (∼8) ∼2 (∼16)

boundaries. They are adjusted so as to reproduce esti-
mated excess energy γt of the twin � = 3 {1 1 1} 〈1 10〉
[40–42].

We follow a procedure already used for Ni-Au [43]
for the crossed M-I interactions. The crossed parame-
ters A and ξ , are obtained as geometric means of the
corresponding parameters for the M-M and I-I interac-
tions, and the crossed p, q, rc1 and rc2 parameters are
similarly obtained as arithmetic means.

Parameters and results obtained for our FS-RGL3
potentials are given and compared to experimental data
in Table I. It is probably the main quality of the n-body
potentials to give a correct estimation of the vacancy
formation energies (Pair potentials give an unrelaxed
formation energy equal to the atomic cohesive energy,
which is obviously wrong for metals). Let us note that
γt would be zero for FS-RGL2 potentials and can even
be slightly negative because of the cutoff polynomials.

The bulk modulus B measures the hydrostatic ‘com-
pressive’ response. Nickel is the least compressive
metal. The two shear constants c′ and c44 measure the
energy responses to imposed angular distortions. One
can see that in this respect nickel is much more rigid
than copper, gold and silver, by factors from two to
three. This corresponds to the fact that nickel is the
only transition metal among the four metals considered
here. Its binding due to its d-electrons is angular depen-
dent because of the directionality of the d-orbitals. Even
if our FS-RGL potential does not explicitly contain this
feature, it still has it somehow implicitly via the fitting
of the potential parameters on the elastic properties of
the material.

Let us finally mention that nickel is ferromagnetic
below TCurie = 641 K, a feature we do not explic-
itly take into account. Gold is special because of its
Super Van der Waals interaction between the closed
shells of gold atoms due to unmasked relativistic ef-

fects [44, 45], another feature we could not either ex-
plicitly include in our modelisation. Only ab initio cal-
culations based on the Dirac equation, as opposed to the
Schrödinger equation, could do better from that point of
view.

2.2. Simulation techniques
The systems are relaxed by means of a quenched molec-
ular dynamics algorithm which leads to the energy min-
imization at T = 0 K [46]. The simulation boxes include
several hundreds of atoms. For the study of intergran-
ular segregation, they contain only one grain boundary
thanks to the use of Möbius, or antiperiodic, border
conditions [47]. These border conditions make it pos-
sible to exclude the second grain boundary required by
the periodic boundary conditions, and thus to double
the distance which separates the grain boundary from
its image.

2.3. Local stresses, pressures and Voronoı̈
volumes

On can define at the atomic level the Kluger stress den-
sity tensor τi

↔ associated to an atom i which undergoes
fi j forces from its j neighbours. The average of the
diagonal components of this tensor corresponds to a
local atomic (density) pressure, withstanding a change
of sign to comply with the conventional definition of a
pressure. A negative pressure pi , corresponds to a site
in tension and the positive pressure corresponds to a site
in compression. One caveat concerning the use of this
atomic (density) pressure is that this scalar value is re-
ally significant only if the non diagonal components of
the stress tensor are negligible and if the three diagonal
components are roughly equal. One has [5, 48]:

τ
αβ

i = 1

2vi

∑

j(�=i)

f α
i j rβ

i j ; pi = −1

3

3∑

α=1

ταα
i (2)

This relation implies the estimate of the local Voronoı̈
volume vi , associated with atom i . The Dirichlet-
Voronoı̈ regions [49, 50] can formally be simply de-
fined in 2d as school districts if atoms represent schools
[51]. The exact calculation of the Voronoı̈ 3d volumes is
somewhat involved [52]. The relative variation between
this volume and that of a site in the perfect single crys-
tal is �vi/v = (vi − v◦)/v◦, where v◦ is the atomic
Voronoı̈ volume calculated in the perfect crystal.

2.4. Segregation energies and its driving
forces

With the assumption of infinitely diluted solution, the
segregation energy of a solute atom located at site i ,
�E seg

i , is calculated by the following formula

�E seg
i = E tot

i (solute) − E tot
b (solute) (3)

where E tot
i (solute) [resp. E tot

b (solute)] is the total en-
ergy of the relaxed system with a solute atom located at
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site i[resp. located at a bulk site]. A negative value of the
energy of segregation indicates that site i is favourable to
segregation. The sites to be considered here are atomic
sites (substitution of a solvent atom by an atom of so-
lute).

Segregation is modelled at the atomic scale not only
to get numerical values but also with the aim of iden-
tifying its ‘driving forces’, that is to say the physical
phenomena which can explain it. Wynblatt and Ku [25,
26] proposed for surface segregation a synthesis of the
chemical approach of Defay and Prigogine developed
for surfaces of liquids, with averaged first neighbours
broken bonds [53] and the elastic approach of McLean
developed for grain boundaries [54]. The energy of seg-
regation was thus regarded as the sum of a “chemical”
term due to the breaking of bonds and an “elastic” term
due to the deformation elastic energy.

We showed in [24] that the Pines-Friedel formula
used by McLean [54–57] works for a large solute atom
in a slightly dilated atomic site or for a small solute
atom in a slightly contracted atomic site, when such
sites exist, but not for other cases. An atomistic level
procedure adapted to FS-RGL potentials has been de-
vised to define and calculate an elastic effect called size
effect at atomic site i , �E size

i , as the energy of segre-
gation including atomic relaxations of a virtual solute
atom having all the parameters of the solvent except
for the size which is taken equal to that of the impurity
atom [21, 58].

In the original model of surface segregation which
simply considers pair interactions between first neigh-
bours on rigid lattices, the “chemical” term can be de-
composed into two physical terms which can be cal-
culated separately, one which corresponds to an excess
cohesion energy effect per site and another one which
corresponds to an “alloy” effect. This analysis has been
extended to the many-body Finnis-Sinclair type poten-
tials [27]. One can also heuristically let the computer
relax the rigid lattice condition. The resulting three driv-
ing force analysis has thus been rather successfully ap-
plied to surface segregation studies using reasonably
realistic FS-RGL2 potentials [21, 22]. It has also been
extrapolated to GB segregation [21, 22] with the nu-
merical observation that the “alloy” effect should not
be considered at least in the way it was estimated. One
of us showed that the artificial decomposition of the
chemical term into an excess cohesion energy effect
and an “alloy” effect is actually not justified analyti-
cally in the infinite dilution limit even within the sim-
plest models for grain boundary segregation [59]. No
alloy effect is expected and one is left with a chemical
effect which can only be tentatively assimilated to an
excess cohesion energy term.

One thus only has two driving forces for GB segrega-
tion, with a tentative phenomenological decomposition
as following

�E seg
i = �E size

i + �exscoh
i (4)

The elastic size effect is calculated by the method of
virtual impurity which was mentioned above [21, 58].

The cohesion effect corresponds to a difference in ex-

Figure 2 Structure of the �11′ {332} 〈110〉 grain boundary as simulated
in nickel. See [62] for the comparison with the experimental image. The
labelling of sites is explicited in the following Section.

cess cohesion energies of site i , defined in the following
way for a system M(I )

�exscoh
i [M(I )] = exscoh

i (I ) − exscoh
i (M) (5)

where exscoh
i (A) represents the excess cohesive energy

of site i for an atom in pure system A, exscoh
i (A) =

TABLE I I Geometrical and physical characteristics of the principal
sites of {332} grain boundary in pure metals

Ni Cu

�vi /v pi exscoh
i �vi /v pi exscoh

i
Site (%) (GPa) (meV) (%) (GPa) (meV)

A′ 11.2 −10.5 62 10.69 −6.7 41
B ′

1 9.0 −1.61 165 8.77 −1.57 103
B ′

2 3 −3.27 50 2.53 −2.0 30
B ′

3 2.2 −3.6 9.5 2.28 −2.34 5
B ′

4 2.85 2.55 138 2.61 1 .44 88
C ′ −0.8 2.86 73 −0.92 1.70 45
D′ −0.2 11.11 270 −0.49 6.69 171

Ag Au

A′ 11.4 −4.38 55 10.85 −5.4 68
B ′

1 9.8 −0.60 101 10.0 −0.6 110
B ′

2 4.5 −2.55 29 5.36 −4.0 38
B ′

3 1.8 −1.27 5.6 1.3 −1.28 6.4
B ′

4 4.1 0.77 71 4.86 0.6 71
C ′ −.96 1.14 30 −1.15 1.7 29
D′ 1.1 4.67 140 1.75 5.62 142

Figure 3 Pressures pi (Gpa) versus the volume variations �vi /v (%)
for the seven significant intergranular atomic sites of the {332} GB for
the four metals, Ni, Cu, Ag and Au. The dotted line is mainly a guide
for the eye. Sites B ′

1, B ′
4 and D′ clearly appear as off that line.
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Figure 4 Components of the local stress tensors per atomic site for the four metals Ni, Cu, Ag and Au. We give here Tαβ (site) ≡ vi , τ
αβ
i in meV, one

has Tαβ (site) ∼ v◦ταβ
i (and v◦ = a3/4). With respect to Fig. 2, x is vertical (〈113〉) and y is horizontal (〈332〉). Because each site appears twice in the

structure we only give the absolute value of Txy . Out of plane Txz and Tyz components have zero values.

Ei (A) − Ecoh(A), where Ei (A) is the cohesive energy
of the i site atom.

It is the validity of this decomposition which will be
checked in the following for various systems.

3. Σ11′ {332} 〈110〉 grain boundary
segregation

3.1. Atomic structure
This GB has been studied and observed on the atomic
level with perfect agreement between the atomic simu-
lations [60, 61] and the HRTEM observations in a nickel
bicrystal [62]. The atomic structure is not symmetric in

Figure 5 Plot of the segregation energies �E seg
i versus the sums of the

size effect and the excess cohesion effect �E size
i + �exscoh

i per atomic
site for all studied systems.

the immediate vicinity of the {332} interfacial plane. Its
local structural pattern is named “zigzag” with a sym-
metry of second kind of the type m’ characterized by a
glide mirror plane, cf. Fig. 2. At larger distances from
the grain boundary plane, this grain boundary is also
characterized by a vertical rigid translation between
the grains by ∼0.4 the {113} interplanar distance. It
should be noted that it is not this translation which con-
fers the m’ symmetry to this grain boundary, contrary
to the case of �3 {112} studied by Menyhard et al.
[13]. The �11′ {332} GB is a grain boundary of high
energy. Its calculated energy is approximately twice
that of the �11 {113} GB [62]. The excess interfa-
cial energies of the optimised structures are, in mJ/m2,
967.8 for Ni, 580.5 for Cu, 399.5 for Ag and 434.4 for
Au. Although these excess energies do not have to be
proportional to the bulk cohesive energies of the cor-
responding materials given in Table I (compare with
[63]), the inversion in this respect between copper and
gold is essentially due to the difference of the crystal-
lographic parameters since these excess energies are
actually given per surface units (also see [64]). In ad-
dition to the importance of the agreement between nu-
merical simulation and experimental observations, at
least in the case of nickel, the structure of this grain
boundary has the advantage of being stable, in particu-
lar with respect to segregation. We did check for every-
one of the four potentials that the zigzag glide mirror
plane structure is the stable structure with respect to
the quasi mirror symmetric structure M also studied in
[65].
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Figure 6 Segregation energy balance detailed by site and binary alloy.

3.2. Characterization of the principal sites
and their physical properties

Seven types of significant atomic sites can be identi-
fied. They are denoted as in [24], v.g. according to the
order of their segregation energy in the direct Ni(Ag)
system for which these energies have the strongest val-
ues: A′, B ′

1, B ′
2, B ′

3, B ′
4, C ′ and D′ (see Fig. 2). Above

mentioned geometrical and physical properties of these
intergranular sites have been calculated in each pure
metallic system and are compiled in Table II.

The relative volume variations �vi/v remain essen-
tially similar for all the considered metals with never-
theless possible non-negligible relative differences, in
particular for the B ′

2, B ′
4 and D′ sites. One observes in

Fig. 3 a good correlation between pi and �vi/v ex-

cept for the B ′
1, B ′

4 and D′ sites. It is noteworthy that
these three sites have relatively important excess cohe-
sive energies in each of the four metals. Examination of
the local stress tensor components in Fig. 4 shows that
the hydrostatic condition is almost never satisfied and
that the planar Txy off-diagonal component often has
a value comparable with those of the diagonal compo-
nents. Sites A′ and D′ are hydrostatic-like, A′ strongly
in tension, D′ strongly in compression. The other sites
are highly non hydrostatic. Although A′ is as much in
tension as D′ is in compression, the excess cohesive en-
ergies are much smaller for A′ than for D′. This reflects
the anharmonic character of the interatomic potentials.
Large compressions are energetically more costly than
large extensions.
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3.3. Analysis and discussion
of the segregation driving forces

Fig. 5 shows that the sum of both the size and cohe-
sion effects always allows a good reproduction of the
segregation energy per atomic site in all binary sys-
tems studied here. The phenomenological analysis de-
velopped in Section 2.4 which leads to equation 7 is
thus corroborated by numerical calculations on binary
metallic systems with embedded atom potentials.

To allow for a more detailed analysis, the balance
of the segregation energies versus the driving effects is
explicited in Fig. 6.

The size effect clearly appears as the main driv-
ing force for segregation for systems like Ni(Ag) and
Cu(Ag) for which the atomic size difference |r − 1| is
indeed greater than 10%.

The Ni(Cu) (and its reverse Cu(Ni)) system is inter-
esting in as much as it corresponds to a case where the
size effect is small (|r − 1| ∼ 2%) and the excess co-
hesion effect can play a major role. This is specially
the case for sites B ′

1, B ′
4 and D′ where the size effect is

small with respect to the excess cohesion effect, (this
is also true for site C ′ although with small values and
negligible segregation energies). B ′

1 and B ′
4 undergo a

large shear stress (Txy , see Fig. 2) and D′ is strongly
compressed. The excess cohesive energies being much
smaller for A′ than for D′, as explained in Section 3.2,
the excess cohesion effect is negligible for the A′ site
which is not the symmetric of the D′ site from that point
of view.

The excess cohesion effect also plays an important
rôle for these B ′

1, B ′
4 and D′ sites in Ni(Ag) (and

Ag(Ni)), even if the size effect is very strong in these
systems.

The fact that in systems containing nickel, the ex-
cess cohesive effect is important for anisotropically dis-
turbed sites like B ′

1 and B ′
4 can be related to the fact that

nickel is the only transition metal among the four metals
considered here. As seen in Table I (Section 2.1), nickel
is much more resistant to shear stresses than copper,
silver and gold, a feature that our potentials reproduce
reasonably well. The site D′ also undergoes some local
shear stress coupled to its strongly compressed state.

For systems with no size effect such as Au(Ag) and
Ag(Au), which have a size difference of only 0.2%,
all effects are very small and cannot be discussed
further. Besides the non relativistic limitation of our
semi-empirical potential already alluded to at the end
of Section 2.1, one should also mention that the Au-Ag
deviation from Vegard’s law follows the Zen’s law [66]
and cannot be explained with simple modellisations
[55, 67, 68].

We checked that we obtained similar behaviours per
atomic site in the case of the �11 {113} grain bound-
ary except for the fact that this latter has no strongly
compressed site.

4. Conclusions
The segregation energy numerically analysed in the in-
finitely diluted limit at the atomic level appears to be
essentially given by the sum of a size effect and an

excess cohesion effect for all binary metallic systems
made of nickel, copper, silver and gold. The size effect is
often the predominant effect. This soundly generalises
previous conclusions drawn from limited studies.

It is however found that for non hydrostatic and/or
strongly compressed atomic sites the contribution of
the excess cohesion effect can be important. This effect
can even be the leading one for such sites when one of
the metals is the transition one, nickel, and the other
is a noble metal as copper. We relate this behaviour to
the special character of these sites coupled to the rigid
d-binding of nickel versus the soft s-binding of noble
metals.

We believe that the excess cohesion effect can also be
important when the solute and the solvant are of a very
different nature, such as for sulfur in nickel or phos-
phorous in iron which are cases of concern in industrial
applications.
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